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From a Single Accelerated Node to Exascale

● MTTF of the entire machine depends on reliability of each node

● The MTTF of the entire machine can be statistically computed 
based on single-node reliability for a number of distributions

– Exp(1/100)

– Weibull(0.7, 1/100)

– Weibull(0.5, 1/100)
● See Yves Robert's work for detailed analysis

One node
~103 cores

MTTF = 1 year MTTF = 10 years MTTF = 120 years

↓ ↓ ↓ ↓

Exascale machine
~106 nodes

30 seconds 5 minutes 1 hour
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Field Data on Resilience

● Soft errors...

– are caused by: cosmic rays (alpha particles, high energy and/or 
thermal neutrons)

– occur in practice
● Commercial study in 2000 by Sun Microsystems
● ASC Q supercomputer at Los Alamos in 2003
● Jaguar (Cray XT5) at ORNL

– Nearly 225k cores
– 1253 separate node crashes during 537 days (Aug 2008-Feb 2010)
– Or 2.33 failures per day
– Or less 10 hours of failure-free operation

● … and any non-ECC machine
● Accelerators are common

– In many shared-memory systems

– Supercomputers
● Tianhe-1A, Titan (Cray XK7, 560k cores), Tianhe-2 (3M+ cores)

● And at Exascale ~1 billion threads and MTTF < 1 day!
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Hessenberg Reduction (HRD) and Its Applications

● HRD = Hessenberg Reduction

– General (non-symmetric) eigenvalue problem

– Generalized eigenvalue problem
● Applications

– Structural mechanics

– Spectral graph analysis

– Control theory

– …
● Complexity

– 10/
3
 n3 + O(n2)

– Both compute bound and memory bound



5/17 

Numerical Eigenvalue Algorithm Recap

● To solve

Ax = λx or Ax = λBx

● We transform matrix A into Hessenberg matrix H with the same 
eigenvalues:
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● H is in Hessenberg form:

● Iterative algorithm is used to find eigenvalues of H 
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Panel-Update Approach

Panel 2 Right Update 2

Left Update 2 Panel 3

Begin iteration 1
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Propagation of Error During Hessenberg Reduction
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Techniques for Error Protection and Failure Recovery

● Algorithm-Based Fault Tolerance

– Kuang-Hua Hua, Jacob Abraham, ABFT for Matrix Operations
● Implementation on systolic arrays

– Takes advantage of additional mathematical relationship(s)
● Already present in algorithm
● Introduced (cheaply, if possible) by ABFT – usually weighted sums

● Diskless checkpointing

– Additional (small) data is kept in live processes or extra memory

– No need for full I/O checkpointing
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From Huang and Abraham: Checksum Mat-Mat-Mul

C
H
E
C
K
S
U
M

CHECKSUM

=

C
H
E
C
K
S
U
M

CHECKSUM C
f



10/17 

Fault Tolerant Hessenberg Reduction

Begin iteration Factorize panel Right update

Left update Trailing update End iteration

DLAHRD

DGEMM

DGEMM DLARFB
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HRD: Extra Computation for Single-Error Protection

DGEMV

DGEMV
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HRD: Extra Computation for Two-Error Protection

DGETRF (solve)
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Performance with Error Protection (Error in Panel)

Intel Sandy Bridge Xeon E5-2670 2.6 GHz+MKL 11.2 NVIDIA Kepler K40c+cuBLAS 7
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Performance with Error Protection (Error in Upper)

Intel Sandy Bridge Xeon E5-2670 2.6 GHz+MKL 11.2 NVIDIA Kepler K40c+cuBLAS 7
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Performance with Error Protection (Error in Trailing)

Intel Sandy Bridge Xeon E5-2670 2.6 GHz+MKL 11.2 NVIDIA Kepler K40c+cuBLAS 7
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Numerical Accuracy

● Numerical accuracy can be measured in various forms

– Scaled residual (backward error)

– Orthogonality of Q's
● Accuracy can be different depending on:

– Location of error: panel, upper, trailing

– Time of error: beginning, middle, end of HRD
● Summary of numerical results for N=1k,…,10k

– Errors in non-fault tolerant code: 10-18 – 10-17 

– Errors in upper and trailing on the order of 10-18 – 10-17 

– Errors in panel on the order of 10-15 – 10-14 
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Conclusions and Future Work

● Summary

– Presented design and analysis of fault-tolerant Hessenberg 
reduction

– The methods used: ABFT, diskless checkpointing

– Hardware used: GPU accelerator

– Minimal overhead in performance

– About 2-digit loss for some scenarios but still accurate in working 
precision

● Future directions

– Address all two-sided factorizations within a single framework

– Support for upcoming accelerators:
● Intel KNL and Sky Lake
● NVIDIA Pascal, Tegra, Jetson, Denver2
● AMD Polaris, Zen
● Google TPU


